Skip to main content
Linderman Library Rotunda stained glass dome
Michael Layden, Associate Professor of Biological Sciences at Lehigh University

Michael Layden

Associate Professor

610.758.3625
mjl514@lehigh.edu
D228 - Iacocca Hall

Explore this Profile
×

Additional Interests

  • Neural Development

Research Statement

Primary interests:

  • Identifying and understanding the mechanisms that regulate neural development and regeneration.
  • Understanding the evolution of nervous systems by comparing the developmental mechanisms that regulate nervous system formation in extant taxa.

The Layden Lab studies neural development in the sea anemone Nematostella vectensis. Nematostella is an emerging system that is important, because it is a robust model for studying mechanisms that regulate neurogenesis during development and regeneration. Understanding the similarities and differences in how developmental programs are redeployed during regeneration will provide critical clues necessary to better design regenerative therapies for biomedical applications.

Nematostella is also a cnidarian animal that possesses a nerve net rather than a central nervous system. Cnidarians (jellyfish, corals, sea anemones, hydras) are a phylogenetically pivotal group of animals, because they are the closest relatives to the bilaterians (insects, annelids, mollusks, sea urchin, vertebrates). One characteristic of most bilaterians is the presence of a centralized nervous system. By investigating neurogenesis in cnidarians we can infer the ancestral mechanisms that gave rise to and perhaps evolutionary origin of the bilaterian central nervous system(s).

Current Projects

  1. Characterizing the role of the neurogenic transcription factor NvashA during development and regeneration.

    NvashA regulates formation of a subset of the Nematostella nervous system during embyrogenesis. We will continue to disrupt NvashA function and assay neural phenotypes at larval and juvenile polyp stages. In conjunction with this we are improving approaches to disrupt NvashA function during regeneration. The goal is to assay whether NvashA regulates formation of the same neurons that it does during development, regulates neural development using the exact same molecular program, and/or regulates distinct neuron sub-types that are not regulated by NvashA during development.
     
  2. Characterizing transgenic lines

    As part of our work investigating NvashA we have generated a number of transgenic lines. We are in the process of characterizing the types of neurons described by the transgenic lines, mapping the projections from each neuronal type, and describing re-development of neurons labeled by transgenic reporters during regeneration.
     
  3. Investigating the evolution of Notch signaling as a regulator of neural development.

    We recently reported about the role of Notch signaling as a regulator of neural differentiation, and in particular of its role regulating NvashA-dependent neurogenesis. We found some key differences between Notch signaling in Nematostella and in bilaterians. Current work aims to better understand the molecular mechanism by which Notch regulates neurogenesis in cnidarians in order to better understand the evolution of Notch signaling and neural differentiation.

Publications

*denotes with Lehigh affiliation

Layden, M. J., Rentzsch, F., & Röttinger, E. (2016). The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 1–21. doi: 10.1002/wdev.222

Layden, M. J., Johnston, H., Amiel, A. R., Havrilak, J., Steinworth, B., Chock, T., et al. (2016). MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biology, 1–19. doi: 10.1186/s12915-016-0282-1

Rentzsch, F., Layden, M., & Manuel, M. (2016). The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdisciplinary Reviews: Developmental Biology, 1–19. doi: 10.1002/wdev.257

*Li, X., Martinson, A., Layden, M.J., Diatta, F., Sberna, A., Simmons, D., Martindale, M., Jegla, T. 2015. Ehter-a-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. Journal of Experimental Biology. 218, 526-536 doi: 10.1242/jeb. 110080.

*Baker, E., Layden, M.J. van Rossum, D., Kael, B., Medina, M., Simpson, E., Jegla, T. 2015. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih. PLOS One. DOI: 10.1371/journal.poine.0142730.

*Layden, M.J., Martindale, M.Q., (2014) Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. EvoDevo, 5:30 doi:10.1186/2041-9139-5-30

Heckscher, E., Long, F., Layden, M.J., Chuang, C., Manning, L., Richart, J., Pearson J.C., Crews, S.T., Peng, H., Myers, E., Doe, C.Q., (2014) Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience. Development, doi:10.1242/dev.108720

Martinson, A.P., van Rossum, D.B., Diatta, F.H., Layden, M.J., Rhodes, S.A., Martindale, M.Q., Jegla, T., (2014) Functional evolution of Erg Potassium Channel Gating reveals an ancient origin for IKr. PNAS doi:10.1073/pnas.1321716111

Layden, M.J., Wolenski, F.S., Roettinger, E, Gilmore, T.D., Martindale, M.Q., (2013) Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vecentsis. Nature Protocols 8: 924-34 doi: 10.1038/nprot.2013.009

Wolenski, F.S., Layden, M.J., Martindale, M.Q., Gilmore T.D., Finnerty, J.R., (2013) Characterizing the spatiotemporal expression of RNAs and proteins in the starlet sea anemone, Nematostella vectensisNature Protocols 8: 900-15 doi: 10.1038/nprot.2013.014

Reitzel, A.M., Herrera, S., Layden, M.J., Martindale, M.Q., Shank, T.M., (2013) Going where traditional markers have not gone before: utility of and promise for RAD-sequencing in marine invertebrate phylogeography and population genomics. Molecular Ecology doi: 10.1111/mec.12228

*Layden, M.J., Boekhout, M., Martindale, M.Q. (2012) Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139: 1013-22 doi: 10.1242/dev.073221

Layden, M.J., Meyer, N.P., Pang, K., Seaver E.C., Martindale, M.Q. (2010), Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. EvoDevo, 1:12

Layden, M.J., Odden, J.P., Schmid, A., Garces, A., Thor, S., Doe, C.Q. (2005). Zfh1, a somatic motor neuron transcription factor, regulates axon exit from the CNS. Developmental Biology, 291(2): 253-63.

Cheesman, S.E., Layden, M.J., Von Ohlen, T., Doe, C.Q., Eisen, J.S. (2004). Zebrafish and
fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation. Development, 131(21): 5221-5232.

Hagen FK, Layden M, Nehrke K, Gentile K, Berbach K, Tsao CC, Forsythe M (2001) Mucin-type O-Glycosylation in C. elegans is initiated by a family of glycosyltransferases. TIGG, 13:463-479.